Prepared in a similar manner from the corresponding pyrazolylpyridine and alkyl halde, either without solvent in a bomb or under reflux in a suitable alcoholic solveot, were 1-4, 7-18, 20-38. Properties are included in Table 1.

4-[5(3)-Ethyl-3(5)-pyrazolyl]-1-methylpiperidine Hydrochloride (6).—A 2.0-g sample of 1-methyl-4-[5(3)-ethyl-3(5)-pyrazolyl]pyridinium chloride was hydrogenated at 2.1 kg/cm² at room temperature in 20 ml of AeOH with 0.5 g of PtO₂. After 3 hr the catalyst was removed, and the solvent was distilled on a steam bath under reduced pressure. Trituration of the oily residue with MeCN left 2.0 g of colorless solid, mp 144–155°. Recrystallization t MeCN) gave colorless prisms, mp 153–154°. Ataal. (Cp1b₂ClN₃) C, H, N; Cl: calcd, 14.6; found, 15.1. **1-Methyl-4-[5(3)-carboxy-3(5)-pyrazolyl]pyridinium Hydrox**ide Inner Salt (19).--A sulution of 2.67 g (0.01 mole) of 1-methyl-4-[5(3)-cthoxycarbonyl-3(5)-pyrazolyl]pyridinium chloride, 25 ml of H₂O, and 20 ml of 1 N NaOH was holied on a hot plate until 15 ml of solution remained. The solution was neutralized with dilute HCI, and the solid which separated was collected. Recrystallization (EtOH-H₂O) provided 1.2 g of very hygroscopic colorless needles. Properties of **19** are included in Table 1.

Acknowledgment.—We thank Mr. T. I., Fields, who synthesized compounds **1**, **2**, **5**, **49**, **50**, and **51**, for permission to describe his results.

Isoxazolylpyridinium Salts. A New Class of Hypoglycemic Agents

VICTOR J. BAUER, WILLIAM J. FANSHAWE, HARRY P. DALALIAN, AND S. R. SAFIR

Organic Chemical Research Section, Lederle Laboratorics, A Divison of American Cyanamid Campany, Pearl Ricer, New York = 10965

Received April 24, 1968

A series of 4-isoxazolyl pyridinium salts has been synthesized. These compounds display interesting hypoglycemic activity in mice.

4-[3(5)-Pyrazolyl]pyridinium salts (1, for instance) have recently been found to display interesting hypoglycemic activity in normal chicks and alloxan-diabetic mice.¹ As part of the comprehensive development of this lead, we have investigated the replacement of the pyrazole ring with other five-membered heterocycles. In this paper we describe the synthesis of some novel 4-(isoxazolyl)pyridinium salts.

Reaction of 1-(4-pyridyl)-1,3-butanedione (2) with hydroxylamine hydrochloride at room temperature provided the monoxime 3, which was readily converted to the isoxazolylpyridine 4 by heating with dilute base (Scheme I). Compound 4, which was also

prepared directly from 2 without isolation of 3, was quaternized to 1-methyl-4-(3-methyl-5-isoxazolyl)pyridinium chloride (5) with methyl chloride. Alternatively, the dione 2 was first heated with methyl chloride to give the salt 6, which, when treated with hydroxylamine hydrochloride, gave a separable mixture of 5 and 7.

Examination of the nmr spectra of the isomeric isoxazolylpyridinium salts 5 and 7 offered a first insight into the structural assignments. The nmr spectrum of 5 displayed singlets at τ 7.55 and 2.68 (isoxazolyl CH₃ and H, respectively), while the corresponding signals for 7 were a doublet at τ 7.38 and a quartet at 3.07. If a significant degree of bond localization in the isoxazole ring is assumed, one would expect to observe allylic coupling between the 4-H and 5-CH₃ in the nmr spectrum of 7, while the 4-H and 3-CH₃ should appear as singlets in the spectrum of 5. Confirmation of structures 5 and 7 was obtained in the mass spectral fragmentation patterns which showed peaks at m/e 106 (5a) and 104 (7a), respectively. Finally, unequivocal

proof of structure **5** was provided by single-crystal X-ray analysis of the corresponding bromide salt **8**. In practice, differentiation between the isomer classes can most readily be made by ultraviolet spectroscopy; **5** exhibits a maximum at 293 m μ , **7** at 255 m μ .

When it was observed that **5** displayed interesting hypoglycemic activity in normal and alloxan-diabetic mice,² the preparation of a series of analogs was undertaken. The choice of substituents considered was influenced by the structure-activity correlation already developed for the pyrazolylpyridinium salts.⁴ Reaction of the appropriate dicarbonyl compound with hydroxylamine gave, in some cases, the isoxazolylpyridine **9** or **10**, in others the oxime **12** or **13**; the latter were then cyclodehydrated to the isoxazolylpyridines **11**

⁽¹⁾ V. J. Baber, H. P. Dalatian, W. J. Fanshawe, S. R. Sabr, E. C. Tocus, and C. R. Boshart, J. Met. Chem., 11, 981 (1968).

⁽²⁾ S. J. Riggt, D. A. Blockens, and C. R. Boshart, Diabetes, in press.

Hypo-

Compd	+	\mathbf{R}_2	Ra	х	Mp. °C dec	Recrystn solvent	Forniula	Analyses	in mice ^a
5 C	CH_3	Н	CH_3	Cl	250	<i>i</i> -PrOH	$C_{10}H_{11}ClN_2O$	C, H, Cl, N	2
7	See structure 7			Cl	221 - 222	CH ₃ CN	C10H11ClN2O	C, H, Cl; N^b	2
8 (CH₃	Н	CH3	\mathbf{Br}	261 - 263	EtOH	$C_{10}H_{11}BrN_2O$	C, H, Br, N	
15 C	CH_3	Н	C_2H_5	I	193 - 194	<i>i</i> -PrOH	$C_{11}H_{13}IN_{3}O$	C, H, I, N	1
16 (CH_3	Н	$n-C_{3}H_{7}$	\mathbf{Br}	181 - 183	CH ₃ CN	$C_{12}H_{15}BrN_2O$	C, H, Br, N	1
17 C	CH_3	Н	\rightarrow CH ₂	Br	165 - 166	CH ₃ CN	$C_{13}H_{15}BrN_2O$	C, H, Br, N	1
18 C	CH₃	Н	$CH_{3}OCH_{2}CH_{2}$	Cl	73-74	<i>i</i> -PrOH	$C_{12}H_{15}ClN_2O_2\cdot H_2O$	C, H, Cl, N	1
-19 C	CH_3	Н	$CH_2 = CHCH_2$	Cl	86	CH ₃ CN-Et ₂ O	$C_{12}H_{13}ClN_2O\cdot H_2O$	H, Cl; C, ^c N ^d	1
20 C	CH_3	Η	$C_6H_5CH=CHCH_2$	Cl	189 - 191	CH_3CN	$C_{18}H_{17}ClN_2O$	C, Cl, N; H^{e}	0
21 (C_2H_5	Н	CH_3	Cl	205 - 206	CH ₃ CN	$C_{11}H_{13}ClN_2O \cdot 0.25$ -	C, H, Cl, N	2
							$\rm H_{2}O$		
-22 C	C_2H_5	Н	C_2H_5	Ι	154	<i>i</i> -PrOH	$C_{12}H_{15}IN_2O$	C, H, I, N	1
23 C	CH_3	CH_3	CH_3	CI	246 - 247	$CH_{3}CN$	$C_{11}H_{13}ClN_2O$	C, H, Cl, N	2
24 I	H	Η	CH_3	Ι	212 - 213	MeOH	$C_9H_9IN_2O$	C, H, I, N	1
25 F	H	Н	CH_3	\mathbf{Cl}	182 - 183	$CH_{3}CN$	C ₉ H ₉ ClN ₂ O	C, Cl, N; H/	1
26 C	F. O		-CH _J	Cl	230	<i>i</i> -PrOH	$\mathrm{C_{10}H_8ClF_3N_2O}$	C, H, Cl, F, N	1

^a Maximum reduction in blood glucose levels in the dosage range 125-500 mg/kg calculated as a percentage change from the predose control value: 50-80% reduction = 2, 15-50% reduction = 1, less than 15% reduction = 0. ^b N: calcd, 13.3; found, 12.8. ^c C: calcd, 56.6; found, 57.2. ^d N: calcd, 11.0; found, 10.5. ^e H: calcd, 5.44; found, 6.09. / H: calcd, 4.61; found, 5.13.

and 14. Reaction of the tertiary bases 4, 9-11, and 14 with a variety of halides gave the isoxazolylpyridinium salts 8 and 15-26 (Table I). The decision as to which isomeric isoxazole class was formed in each reaction was based upon spectral (uv and, when applicable, nmr) data.

Hypoglycemic Activity.—Male mice from Manor Farms weighing 18–25 g were employed. Test compounds (125, 250, or 500 mg/kg) were dissolved in 0.9%saline and administered by gavage in a volume of 0.2ml/25 g of mouse; controls received an equal volume of vehicle. Blood samples (0.02–0.03 ml) obtained from tail veins 4 hr after dosing were assayed for blood glucose (estimated as reducing sugar content) using the method of Hoffman³ as adapted for the Technicon autoanalyzer. Results are included in Table I. Detailed studies of the pharmacology and metabolic effects of the isoxazolylpyridinium salts will be published elsewhere.⁴

Experimental Section⁵

1-(4-Pyridyl)-1,3-butanedione 3-Oxime (3).—To a solution of 24 g (0.15 mole) of 1-(4-pyridyl)-1,3-butanedione,⁶ 20 g (0.29 mole) of HONH₃+Cl⁻, 100 ml of H₂O, and 50 ml of EtOH was added during 0.5 hr with stirring 20 g of Na₂CO₃. After 0.5 hr, a colorless precipitate, 28 g, mp 155–160°, was collected. Three recrystallizations (EtOH) provided colorless crystals: mp 160–170° (lit.⁷ mp 164–165°); nmr (CDCl₃), τ 8.02 (s, 3, CH₃), 6.58 (s, 2, CH₂), 2.50 and 1.33 (d, J = 6 cps, 2 each, pyridyl); uv, 258 m μ (ϵ 5000). Anal. (C₉H₁₀N₂O₂) C, H, N.

4-(3-Methyl-5-isoxazolyl)pyridine (4). A.—To a stirred solution of 21.7 g (0.13 mole) of 1-(4-pyridyl)-1,3-butanedione,⁶ 14 g (0.2 mole) of HON H₃+Cl⁻, 150 ml of H₂O, and 100 ml of EtOH was added at room temperature during 0.5 hr 14 g of Na₂CO₃. The solution was heated under reflux for 12 hr, and 100 ml of solvent was allowed to distil. The mixture was extracted with C₆H₆, and the C₆H₆ solution was concentrated under reduced pressure to 17.5 g of a colorless solid, mp 50-55°. Recrystallization (C₆H₆-hexane) gave colorless needles: mp 67-68°; umr (CDCl₃), τ 7.63 (s, 3, CH₃), 3.43 (s, 1, 4-isoxazolyl), 2.40 and 1.27 (d, J = 6 cps, 2 each, pyridyl); uv, 263 mµ (ϵ 22,900). Anal. (C₉H₈N₂O) C, H, N.

B.—A solution of 0.2 g of **3**, 2 ml of H_2O , 1 ml of EtOH, and 0.1 g of Na_2CO_3 was heated under reflux for 5 hr, diluted with H_2O , and extracted with Et_2O . The Et_4O layer was dried (Mg-SO₄) and concentrated under reduced pressure to a colorless solid. Recrystallization (hexane–Me₂CO) gave 0.15 g of colorless needles, mp 64°; ir identical with that of authentic 4, above.

1-Methyl-4-(3-methyl-5-Isoxazolyl)pyridinium Chloride (5). A mixture of 4.0 g (0.025 mole) of 4 and 10 ml of MeCl was heated for 15 hr at 75° in a glass-lined steel bomb. The excess MeCl

⁽³⁾ W. S. Hoffman, J. Biol. Chem., 120, 51 (1937).

⁽⁴⁾ D. A. Blickens and S. J. Riggi, to be published.

⁽⁵⁾ Melting points were determined in a Hershberg apparatus and are uncorrected. Microanalyses were performed by Mr. L. M. Brancone and staff; where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values. Uv spectra were determined in MeOH solution with a Cary 11 spectrophotometer and nmr spectra were determined with a Varian A-60 spectrometer with TMS or 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt as an internal standard by Mr. W. Fulmor and staff. Partition chromatography was carried out by Mr. C. Pidacks and staff.

⁽⁶⁾ L. Fabbrini, Farmaco, Ed. Sci., 9, 603 (1954).

⁽⁷⁾ R. Tscherne, Monatsh. Chem., 22, 615 (1901).

was allowed to evaporate, and the residual solid was recrystallized (*i*-PrOH) to provide 4.0 g (76%) of crystals, mp 248–249° dec. Two recrystallizations gave colorless prisms: mp 250° dec; mmr (D₂O), τ 7.53 (s, 3, CCH₃), 5.41 (s, 3, NCH₃), 2.63 (s, 4, 4-isoxazolyl), 1.52 and 0.92 (d, J = 7 cps, 2 each, pyridinium); all uv, 293 m μ (ϵ 19,725).

4-Acetoacetyl-1-methylpyridinium Chloride t6). A mixture of 5.0 g (0.03 mole) of 1-(4-pyridyl)-1,3-bintanedione⁶ and 20 ml of MeCl was heated at 95° for 15 hr in a glass-lined steel bomb. The excess MeCl was allowed to evaporate, and the residual solid was washed with Et₂() to provide 4.9 g (777) of tan crystals mp 192–196° dec. Five recrystallizations (*i*-PrOII) gave pale yellow prisms: mp 197–198° dec; mm (D₂O), τ 5.9(s, 3, CCH₂), 5.46 (s, 3, NCH₂), 1.50 and 1.00 (d, $J = \tau$ eps, 2 each, pyridinium): nv, 229 mµ (ϵ 19,700). Anal. (C₁₀H₁₂ClNO₂) C, H, Cl, N.

1-Methyl-4-(5-methyl-3-isoxazolyl)pyridinium Chloride (7).--A mixture of 10 g (0.047 mole) of **6**, 3.5 g (0.05 mole) of HON H₂ τ -Cl τ , and 125 ml of EtOH was heated under reflux with stirring for 3 hr, cooled, and diluted with 200 ml of Et₂O. The solid which separated was recrystallized (*i*-PrO11) to provide 5.2 g of crystals, mp 100–120° dec, which was shown by mmr to be a 1:4 mixture of **5** and **7**. The mixture was subjected to partition chromatography on Celite 560 (Johns-Mauville) using a heptaneu-BnOH-0.04 N HC1 (3:20:10) system. From a 2.0-g sample was educed at 4.5 hold-back volumes 0.7 g of a solid, mp 219–220°. Recrystallization (CH₃CN) gave pure **7**: mp 221–222°: mmr (D₂O), τ 7.38 (d, J = 0.5 cps, 3, CCH₄), 5.55 (s, 3, NCH₄), 3.07 (q, J = 0.5 cps, 1, 4-isoxazoly1), 4.56 and 0.98 (d, J = 7 cps, 2 each, pyridinium): nv, 255 mµ (ϵ 15,000).

4-(3-Ethyl-5-isoxazolyl)pyridine (9) was prepared from crude 1-(4-pyridyl)-1,3-pentanedione¹ and hydroxylamine hydrochloride by the method described above for the synthesis of **4**. The erude product was crystallized (hexane) to provide colorless crystals, np 48–49°. *Anal.* ($C_{10}H_{10}N_2O$) C, H, N.

3-Methyl-4-(3-methyl-5-isoxazolyl)pyridine (10) was prepared from crude 1-(3-methyl-4-pyridyl)-1,3-butanedione¹ and HO-NH₃-Cl⁻ by the method described above for the synthesis of 4. The crude product was crystallized (Et;O) to provide colorless crystals, mp 87-88°. Anal. ($C_{10}H_{10}N_2O$) C, H, N.

1-(4-Pyridyl)-1,3-propanedione 3-Oxime (12).---A solution of 8.6 g (0.05 mole) of crude 1-(4-pyridyl)-1,3-propanedione sodium salt,⁴ 3.6 g (0.05 mole) of HONH₂+Cl⁻, and 75 ml of H₂O was adjusted to pH 8 with NaHCO₃. After 1 hr a tan solid, 5.4 g (73C₄), mp 147-148° dec, separated. Three recrystallizations (EtOH) gave colorless crystals, mp 153-154° dec. *Anal.* (C₈H₈-N₂O₂) C, H, N.

4-(5-Isoxazolyl)pyridine (11).--A mixture of 38 g (0.22 mole) of 12 and 450 ml of AeCl was heated under reflux for 2 hr. The

excess AcCl was distilled under reduced pressure, and the residue was dissolved in H₄O. The solution was neutralized with 5 N NaOH, and the mixture was extracted with Et₂O. The Et₂O solution was dried (MgSO₄) and concentrated to 18 g of a yellow solid. Recrystallization (Et₂O) gave 8.7 g (30°7) of tan crystals, mp 400–402°. Three recrystallizations gave colorless crystals, mp 400–402°. Anad. (CsH₆N₂O) C, H, N.

1-(4-Pyridyl)-4,4,4-trifluoro-1,3-butanedione 1-Oxime (13).

A solution of 2.2 g (0.01 mole) of 4-(4-pyridyl)-4,4,4-triffnoro-4,3-butanedione,8 0.7 g (0.01 mole) of HONH₃ (Cl⁺, 0.7 g of Na₃CO₃, 20 ml of Et0H, and 5 ml of H₂O was heated under reflux for 12 hr. The solution was concentrated to a volume of 5 ml and diluted with 50 ml of H₂O; colorless crystals, 2.0 g (90%), mp 185°, separated. Two recrystallizations (*i*-PrOH -H₂O) provided colorless crystals, mp 187°. Anal. (C₃H₃F₃N₂O₅) C, F, N; 11: called, 3.04; found, 3.70.

4-(5-Trifluoromethyl-3-isoxazolyl)pyridine (14), -To 25 ml of concentrated H₂SO₄ was added during 15 min with stirring 10.0 g (0.04 mole) of **13**. After 20 min, the solution was poured onto ice, diluted with 500 ml of H₂O, and made basic with 100 ml of 10 N NaOH; a solid, 7.5 g, mp 75-81°, separated. Recrystallization (EtOH-H₂O) gave 6.5 g (79%) of colorless prisms, mp 81-83°. Three recrystallizations followed by sublimation at 50° (0.05 mm) gave the analytical sample, mp 82-83°. Auat. (C₂H₃F₄N₂O) C, H, N; F: calcd, 26.6; found, 26.4.

Isoxazolylpyridinium salts 8 and 15–26 were prepared by reaction of the isoxazolylpyridines **4** and **9–12** with an alkyl halide either in a bomb without solvent (as for **5**, above) or in an alcoholic solvent under reflux. Properties are listed in Table 1; uv spectra for **21**, 292 m μ (ϵ 20,200); for **23**, 292 m μ (ϵ 19,200); for **25**, 289 m μ (ϵ 19,000); and for **26**, 247 m μ (ϵ 14,250); mnr (D₂O) for **26**, r 5.43 ts, 3, NCH₃), 2.08 (q, J = 1 eps, 1, 4-isoxazolyl), 1.52 and 0.89 (d, J = 7 eps, 2 each, pyridinium).

Acknowledgments. – The synthesis of 4 was developed by Mr. T. L. Fields. Mass spectral studies were performed by Dr. J. Karliner, and X-ray structure analysis by Dr. J. H. van den Hende. Interpretation of nmr spectra was provided by Mr. G. Morton, Hypoglycemic testing was carried out by Drs. D. A. Blickens and S. J. Riggi of the Department of Metabolic Chemotherapy. We thank our colleagues for permission to report their results.

(8) 11. V. Wagner, 17. S. Patent 3,200,128 (Aug 10, 1965).